Pandas dataframes are used to deal with tabular knowledge in Python. On this article, we are going to talk about the way to choose a row from a dataframe in Python. We may even talk about how we are able to use boolean operators to pick knowledge from a pandas dataframe.
Choose Row From a Dataframe Utilizing iloc Attribute
The iloc
attribute comprises an _iLocIndexer
object that works as an ordered assortment of the rows in a dataframe. The functioning of the iloc
attribute is just like checklist indexing. You should use the iloc
attribute to pick a row from the dataframe. For this, you’ll be able to merely use the place of the row contained in the sq. brackets with the iloc
attribute to pick a row of a pandas dataframe as proven beneath.
myDf=pd.read_csv("samplefile.csv")
print("The dataframe is:")
print(myDf)
place=1
row=myDf.iloc[position]
print("The row at place {} is :{}".format(place,row))
Output:
The dataframe is:
Class Roll Identify
0 1 11 Aditya
1 1 12 Chris
2 1 13 Sam
3 2 1 Joel
4 2 22 Tom
5 2 44 Samantha
6 3 33 Tina
7 3 34 Amy
The row at place 1 is :Class 1
Roll 12
Identify Chris
Identify: 1, dtype: object
Right here, you’ll be able to observe that the iloc
attribute provides the row on the specified place as output.
Choose Row From a Dataframe Utilizing loc Attribute in Python
The loc
attribute of a dataframe works in the same method to the keys of a python dictionary. The loc
attribute comprises a _LocIndexer
object that you need to use to pick rows from a pandas dataframe. You should use the index label contained in the sq. brackets with the loc
attribute to entry the weather of a pandas sequence as proven beneath.
myDf=pd.read_csv("samplefile.csv")
print("The dataframe is:")
print(myDf)
index=2
row=myDf.loc[index]
print("The row at index {} is :{}".format(index,row))
Output:
The dataframe is:
Class Roll Identify
0 1 11 Aditya
1 1 12 Chris
2 1 13 Sam
3 2 1 Joel
4 2 22 Tom
5 2 44 Samantha
6 3 33 Tina
7 3 34 Amy
The row at index 2 is :Class 1
Roll 13
Identify Sam
Identify: 2, dtype: object
When you have outlined a customized index for a dataframe, you need to use the index worth of a row to pick the row from the pandas dataframe as proven beneath.
myDf=pd.read_csv("samplefile.csv",index_col=0)
print("The dataframe is:")
print(myDf)
index=1
row=myDf.loc[index]
print("The row at index {} is :{}".format(index,row))
Output:
The dataframe is:
Roll Identify
Class
1 11 Aditya
1 12 Chris
1 13 Sam
2 1 Joel
2 22 Tom
2 44 Samantha
3 33 Tina
3 34 Amy
The row at index 1 is : Roll Identify
Class
1 11 Aditya
1 12 Chris
1 13 Sam
When you have a multilevel index, you need to use the indices to pick rows from a dataframe as proven beneath.
myDf=pd.read_csv("samplefile.csv",index_col=[0,1])
print("The dataframe is:")
print(myDf)
index=(1,12)
row=myDf.loc[index]
print("The row at index {} is :{}".format(index,row))
Output:
The dataframe is:
Identify
Class Roll
1 11 Aditya
12 Chris
13 Sam
2 1 Joel
22 Tom
44 Samantha
3 33 Tina
34 Amy
The row at index (1, 12) is :Identify Chris
Identify: (1, 12), dtype: object
Choose Column Utilizing Column Identify in a Pandas Dataframe
To pick out a column from a dataframe, you need to use the column title with sq. brackets as proven beneath.
myDf=pd.read_csv("samplefile.csv")
print("The dataframe is:")
print(myDf)
column_name="Class"
column=myDf[column_name]
print("The {} column is :{}".format(column_name,column))
Output:
The dataframe is:
Class Roll Identify
0 1 11 Aditya
1 1 12 Chris
2 1 13 Sam
3 2 1 Joel
4 2 22 Tom
5 2 44 Samantha
6 3 33 Tina
7 3 34 Amy
The Class column is :0 1
1 1
2 1
3 2
4 2
5 2
6 3
7 3
Identify: Class, dtype: int64
If you wish to choose multiple column from a dataframe, you’ll be able to cross an inventory of column names to the sq. brackets as proven beneath.
myDf=pd.read_csv("samplefile.csv")
print("The dataframe is:")
print(myDf)
column_names=["Class","Name"]
column=myDf[column_names]
print("The {} column is :{}".format(column_names,column))
Output:
The dataframe is:
Class Roll Identify
0 1 11 Aditya
1 1 12 Chris
2 1 13 Sam
3 2 1 Joel
4 2 22 Tom
5 2 44 Samantha
6 3 33 Tina
7 3 34 Amy
The ['Class', 'Name'] column is : Class Identify
0 1 Aditya
1 1 Chris
2 1 Sam
3 2 Joel
4 2 Tom
5 2 Samantha
6 3 Tina
7 3 Amy
Boolean Masking in a Pandas Dataframe
Boolean masking is used to verify for a situation in a dataframe. After we apply a boolean operator on a dataframe column, it returns a pandas sequence object containing True
and False
values primarily based on the situation as proven beneath.
myDf=pd.read_csv("samplefile.csv")
print("The dataframe is:")
print(myDf)
boolean_mask=myDf["Class"]>1
print("The boolean masks is:")
print(boolean_mask)
Output:
The dataframe is:
Class Roll Identify
0 1 11 Aditya
1 1 12 Chris
2 1 13 Sam
3 2 1 Joel
4 2 22 Tom
5 2 44 Samantha
6 3 33 Tina
7 3 34 Amy
The boolean masks is:
0 False
1 False
2 False
3 True
4 True
5 True
6 True
7 True
Identify: Class, dtype: bool
You possibly can choose rows from a dataframe utilizing the boolean masks. For this, it’s essential cross the sequence containing the boolean masks to the sq. brackets operator as proven beneath.
myDf=pd.read_csv("samplefile.csv")
print("The dataframe is:")
print(myDf)
boolean_mask=myDf["Class"]>1
print("The boolean masks is:")
print(boolean_mask)
print("The rows during which class>1 is:")
rows=myDf[boolean_mask]
print(rows)
Output:
The dataframe is:
Class Roll Identify
0 1 11 Aditya
1 1 12 Chris
2 1 13 Sam
3 2 1 Joel
4 2 22 Tom
5 2 44 Samantha
6 3 33 Tina
7 3 34 Amy
The boolean masks is:
0 False
1 False
2 False
3 True
4 True
5 True
6 True
7 True
Identify: Class, dtype: bool
The rows during which class>1 is:
Class Roll Identify
3 2 1 Joel
4 2 22 Tom
5 2 44 Samantha
6 3 33 Tina
7 3 34 Amy
As a substitute of utilizing sq. brackets, you can too use the the place()
methodology to pick rows from a dataframe utilizing boolean masking. The the place()
methodology, when invoked on a dataframe, takes the boolean masks as its enter argument and returns a brand new dataframe containing the specified rows as proven beneath.
myDf=pd.read_csv("samplefile.csv")
print("The dataframe is:")
print(myDf)
boolean_mask=myDf["Class"]>1
print("The boolean masks is:")
print(boolean_mask)
print("The rows during which class>1 is:")
rows=myDf.the place(boolean_mask)
print(rows)
Output:
The dataframe is:
Class Roll Identify
0 1 11 Aditya
1 1 12 Chris
2 1 13 Sam
3 2 1 Joel
4 2 22 Tom
5 2 44 Samantha
6 3 33 Tina
7 3 34 Amy
The boolean masks is:
0 False
1 False
2 False
3 True
4 True
5 True
6 True
7 True
Identify: Class, dtype: bool
The rows during which class>1 is:
Class Roll Identify
0 NaN NaN NaN
1 NaN NaN NaN
2 NaN NaN NaN
3 2.0 1.0 Joel
4 2.0 22.0 Tom
5 2.0 44.0 Samantha
6 3.0 33.0 Tina
7 3.0 34.0 Amy
Within the above instance utilizing the the place()
methodology, the rows the place the boolean masks has the worth False
, NaN
values are saved within the dataframe. You possibly can drop the rows containing NaN
values as proven beneath.
myDf=pd.read_csv("samplefile.csv")
print("The dataframe is:")
print(myDf)
boolean_mask=myDf["Class"]>1
print("The boolean masks is:")
print(boolean_mask)
print("The rows during which class>1 is:")
rows=myDf.the place(boolean_mask).dropna()
print(rows)
Output:
The dataframe is:
Class Roll Identify
0 1 11 Aditya
1 1 12 Chris
2 1 13 Sam
3 2 1 Joel
4 2 22 Tom
5 2 44 Samantha
6 3 33 Tina
7 3 34 Amy
The boolean masks is:
0 False
1 False
2 False
3 True
4 True
5 True
6 True
7 True
Identify: Class, dtype: bool
The rows during which class>1 is:
Class Roll Identify
3 2.0 1.0 Joel
4 2.0 22.0 Tom
5 2.0 44.0 Samantha
6 3.0 33.0 Tina
7 3.0 34.0 Amy
You too can use logical operators to create boolean masks from two or extra circumstances as proven beneath.
myDf=pd.read_csv("samplefile.csv")
print("The dataframe is:")
print(myDf)
boolean_mask=(myDf["Class"]>1) & (myDf["Class"]<3)
print("The boolean masks is:")
print(boolean_mask)
print("The rows during which class>1 and <3 is:")
rows=myDf.the place(boolean_mask).dropna()
print(rows)
Output:
The dataframe is:
Class Roll Identify
0 1 11 Aditya
1 1 12 Chris
2 1 13 Sam
3 2 1 Joel
4 2 22 Tom
5 2 44 Samantha
6 3 33 Tina
7 3 34 Amy
The boolean masks is:
0 False
1 False
2 False
3 True
4 True
5 True
6 False
7 False
Identify: Class, dtype: bool
The rows during which class>1 and <3 is:
Class Roll Identify
3 2.0 1.0 Joel
4 2.0 22.0 Tom
5 2.0 44.0 Samantha
After creating the boolean masks, you need to use it to pick the rows the place the boolean masks comprises True as proven beneath.
Conclusion
On this article, we mentioned the way to choose a row from a dataframe. We additionally mentioned the way to choose a column from a dataframe and the way to choose a number of rows from a dataframe utilizing boolean masking.
To study extra about python programming, you’ll be able to learn this text on checklist comprehension. In case you are seeking to get into machine studying, you’ll be able to learn this text on regression in machine studying.
Associated
Beneficial Python Coaching
Course: Python 3 For Learners
Over 15 hours of video content material with guided instruction for freshmen. Learn to create actual world purposes and grasp the fundamentals.